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The Tribolium (flour beetle) competition experiments conducted by Park have been highly influential in
ecology. We have previously shown that the dynamics of single-species Tribolium populations can be
well-described by the discrete-time, 3-dimensional larva–pupa–adult (LPA) model. Motivated by Park’s
experiments, we explore the dynamics of a 6-dimensional “competition LPA model” consisting of two
LPA models coupled through cannibalism. The model predicts a double-loop coexistence attractor, as
well as an unstable exclusion equilibrium with a 5-dimensional stable manifold that plays an important
role in causing one of the species to go extinct in the presence of stochastic perturbations. We also present
a stochastic version of the model, using binomial and Poisson distributions to describe the aggregation of
demographic events within life stages. A novel “stochastic outcome diagram,” the stochastic counterpart
to a bifurcation diagram, summarizes the model-predicted dynamics of uncertainty on the double-loop.
We hypothesize that the model predictions provide an explanation for Park’s data. This “stochastic
double-loop hypothesis” is accessible to experimental verification.
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1. Introduction

Ecologists have long pondered the problem of species competition. Conventional ecological

wisdom says that if two species occupy the same habitat and use the same resources, then one

species will outcompete the other. This “competitive exclusion principle” [8,10] is a

prediction of the simple mathematical models of Lotka [14] and Volterra [22]. The need to

test these predictions experimentally led to a number of laboratory studies, the most

influential of which are the experiments of Gause [8] on yeast and protozoa and a long series

of studies by Thomas Park and his students at the University of Chicago using two species of

flour beetles belonging to the genus Tribolium [15,9].

The Tribolium competition experiment of Park [18] is a treasure of data. There were a total

of 24 treatments involving 8 genetic strains, 16 two-species competitive treatments and 8

single species treatments, each with 10 replicates for a total of 240 individual flour beetle
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cultures. Many cultures were maintained for several years. The research report is based on

2,638,446 census observations. Although these data have been available for 40 years, we are

still confronted with the challenge of explaining Park’s results.

In previous studies, we have shown that the 3-dimensional discrete-time larva–pupa–

adult (LPA) model describes and predicts the dynamics of single-species Tribolium

populations (for example, see [5]). Recently, we reviewed the history of Park’s Tribolium

competition experiments, discussed the mathematical models that were historically applied

to these experiments, and introduced a new two-species model of competition [7]. The new

model is 6-dimensional and consists of two LPA models coupled through cannibalism. The

data of Thomas Park and colleagues provide an opportunity to further study this

“competition LPA model”. The data challenge the model. What insights about the

experimental observations can be obtained from the two-species model?

In this paper, we study the dynamics of the competition LPA model at biologically reasonable

parameter values. The model predicts a double-loop coexistence attractor, as well as an unstable

exclusion equilibrium with a 5-dimensional stable manifold. We propose a stochastic double-

loop hypothesis as an explanation of an observed time series in the experiment of Park [18].

2. Deterministic competition model

The competition LPA model is:

L1;tþ1 ¼ b1A1;te
2cel;11L1;t2cea;11A1;t2cel;12L2;t2cea;12A2;t

P1;tþ1 ¼ L1;tð12 ml;1Þ

A1;tþ1 ¼ P1;te
2cpa;11A1;t2cpa;12A2;t þ A1;tð12 ma;1Þ

L2;tþ1 ¼ b2A2;te
2cel;21L1;t2cea;21A1;t2cel;22L2;t2cea;22A2;t

P2;tþ1 ¼ L2;tð12 ml;2Þ

A2;tþ1 ¼ P2;te
2cpa;21A1;t2cpa;22A2;t þ A2;tð12 ma;2Þ

ð1Þ

The model time step is two weeks, which corresponds to the durations of the L-stage

(feeding larva) and P-stage (non-feeding larva, pupa and callow adult) animals. The

structure of the single-species LPA model is explained in detail in previous work (see, for

example, [4]). In the competition LPA model, each species has its own larval recruitment

rates b1 . 0 and b2 . 0; where bi is the number of larval recruits per adult for species

i during one model time step (in the absence of cannibalism). The larval mortality rates

ml,1 and ml,2 and adult mortality rates ma,1 and ma,2, satisfy 0 # m # 1; and represent the

probability that an animal will die during one model time step. The exponentials represent

the fractional reductions due to cannibalism of eggs by larvae and adults (cel,ij and cea,ij,

respectively) and of pupae by adults (cpa,ij). There are six intra-specific per capita

cannibalism coefficients cel,11, cel,22, cea,11, cea,22, cpa,11, cpa;22 . 0; and six inter-specific

per capita cannibalism coefficients cel,12, cel,21, cea,12, cea,21, cpa,12, cpa;21 . 0: The precise

biological interpretation of the c coefficients and the derivation of the exponential

nonlinearities are found in [4].
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We will use the term “within the axis” when referring to scenarios involving only one

of the two species. Thus we will refer to equilibria of the form ðL*
1;P

*
1;A

*
1; 0; 0; 0Þ with

L*
1;P

*
1;A

*
1 . 0 as “horizontal-axis equilibria,” and equilibria of the form

ð0; 0; 0; L*
2;P

*
2;A

*
2Þ with L*

2;P
*
2;A

*
2 . 0 as “vertical-axis equilibria.” The competition

LPA map has a unique horizontal-axis equilibrium [4] provided

b1
12 ml;1

ma;1
. 1; ð2Þ

and a unique vertical-axis equilibrium provided

b2
12 ml;2

ma;2
. 1: ð3Þ

To study the stability of an axis equilibrium with respect to invasion by the second

species, we consider the Jacobian matrix of the competition LPA map. The Jacobian

evaluated at ðL*
1;P

*
1;A

*
1; 0; 0; 0Þ is a 6 £ 6 matrix with a 3 £ 3 block of zeros in the

lower left corner. This means that the eigenvalues of the 6 £ 6 matrix are the

eigenvalues of the 3 £ 3 block in the upper left corner and the eigenvalues of the 3 £ 3

block in the lower right corner. We assume that the equilibrium is stable in the absence

of a second species, and thus that the three eigenvalues of the upper left block are all

within the unit circle. The three eigenvalues of the lower right block will then determine

if an equilibrium that is stable within the axis will remain stable in the presence of

small numbers of a second species. The lower right block is

0 0 b2e
2cel;21L

*
1
2cea;21A

*
1

1 2 ml;2 0 0

0 e2cpa;21A
*
1 1 2 ma;2

0
BBB@

1
CCCA

with characteristic polynomial

l3 2 ð12 ma;2Þl
2 2 b2ð12 ml;2Þe

2cel;21L
*
1
2ðcea;21þcpa;21ÞA

*
1 : ð4Þ

Satisfaction of the Jury conditions [12] provides a necessary and sufficient condition that

all three eigenvalues lie within the unit circle in the complex plane, and thus provides a

sufficient condition for the stability of the axis equilibrium.

Theorem 1 A horizontal-axis equilibrium ðL*
1;P

*
1;A

*
1; 0; 0; 0Þ is stable whenever

b2
12 ml;2

ma;2
e2cel;21L

*
1
2ðcea;21þcpa;21ÞA

*
1 , 1: ð5Þ

Proof Define

a ¼ b2ð12 ml;2Þe
2cel;21L

*
1
2ðcea;21þcpa;21ÞA

*
1 :

Then the Jury conditions are equivalent to:

(i) ma;2 . a

(ii) 2 2 ma;2 . 2a

(iii) a , 1

(iv) j1 2 a2j . jð1 2 ma;2Þaj
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Assume that (i) is true, so that 0 , a , ma;2: Since ma;2 # 1; (ii) is trivial and (iii) follows

from (i). Since 0 , a , 1 implies a2 , 1; the absolute values on the both sides of (iv) can be

removed. This reduces (iv) to a quadratic inequality in a:

a2 þ ð12 ma;2Þa2 1 , 0:

Since by assumption 0 , a , ma;2; the above inequality holds if

m2
a;2 þ ð1 2 ma;2Þma;2 2 1 # 0

which reduces to ma;2 # 1; thus (iv) follows from (i). Thus, all of the Jury conditions are

satisfied if (and only if) ma;2 . a; that is, if and only if

b2
12 ml;2

ma;2
e2cel;21L

*
1
2ðcea;21þcpa;21ÞA

*
1 , 1:

A

A similar argument shows that the vertical-axis equilibrium ð0; 0; 0; L*
2;P

*
2;A

*
2 is stable

whenever

b1
12 ml;1

ma;1
e2cel;12L

*
2
2ðcea;12þcpa;12ÞA

*
2 , 1: ð6Þ

As expected, raising inter-specific competition leads to stable extinction states which implies

competitive exclusion.

3. Population time series

The time series records that we examine were obtained from the experiment conducted by

Park [18]. In the experiment, single- and mixed-species cultures of four genetic strains of

Tribolium confusum Duval (labeled bI, bII, bIII, bIV) and four genetic strains of Tribolium

castaneum Herbst (labeled cI, cII cIII, cIV) were cultured in shell vials with 8 g of standard

medium (95% whole wheat flour and 5% dried brewer’s yeast by weight) and maintained in

an incubator at 298C, 70% relative humidity. Single-species populations were initiated with

8 adults (4 males and 4 females) while the mixed-species populations were initiated with

4 adults (2 males and 2 females) of each species. At 30-day intervals the number of adults

were counted. Following the adult census all life stages (eggs, larvae, pupae and adults) were

returned to fresh medium. The single-species cultures were maintained for 870 days.

The mixed-species cultures were maintained until one or the other species went extinct.

The longest culture was continued for 1740 days or 4.8 years.

Our objective was to establish a version of the two-species LPA competition model that

would serve as a hypothesis to interpret the observed population time series. We focused, in

particular, on the mixed-species culture involving genetic strain bII of T. confusum and

genetic strain cIV of T. castaneum. The unusual time series pattern (see the top panel of

figure 5) was called “recalcitrant” by Park [18]. We used information from several sources to

obtain parameter values: first, the statistical analyses of time series data on T. castaneum [6],

second, assay experiments on fecundity, fertility, rate of development and adult longevity of

the two species [17] and, third, assay experiments on the cannibalistic interactions of adults

eating eggs, adults eating pupae and larvae eating eggs of the two species [19]. The

parameter values are given in table I.
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The two-species competition model has 18 parameters, any one of which could serve as a

bifurcation parameter. We chose to examine the biological consequences of the changing the

magnitude of the interspecific coefficient of egg eating by the larvae of species one on species

two, namely, cel,21. A bifurcation diagram is given in the top two panels of figure 1.

Figure 1. Top two panels. Bifurcation diagram. Bottom panel. Stochastic outcome diagram.

Table 1. Parameter values.

b1 ¼ 10 b2 ¼ 10 ml;1 ¼ 0:2 ml;2 ¼ 0:2 ma;1 ¼ 0:14 ma;2 ¼ 0:14

cel;11 ¼ 0:012 cel;22 ¼ 0:003 cea;11 ¼ 0:006 cea;22 ¼ 0:015 cpa;11 ¼ 0:064 cpa;22 ¼ 0:01

cel;12 ¼ 0:01 cel;21 ¼ 0:062 cea;12 ¼ 0:011 cea;21 ¼ 0:007 cpa;12 ¼ 0:017 cpa;21 ¼ 0:03
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A stochastic counterpart to the bifurcation diagram, which is discussed fully in a later

section, is displayed in the bottom panel of the figure.

3.1 Coexistence double-loop

The two top panels of figure 1 show bifurcation diagrams (for the parameters in table I) for

the total population of species one and species two as cel,21 varies from 0 to 0.10. There is a

vertical-axis equilibrium at

ð0; 0; 0; 114:04; 91:23; 148:14Þ;

with

b1
12 ml;1

ma;1
e2cel;12L

*
2
2ðcea;12þcpa;12ÞA

*
2 ¼ 0:29 , 1

implying asymptotic stability. Note that the parameter cel,21 has no effect on the asymptotic

stability of this equilibrium, so this extinction state will act as an attractor regardless of what

happens as we vary cel,21.

The stable axis equilibrium (0,0,0,114.04,91.23,148.14) will exist in the presence of a

second attractor. The nature of the second attractor depends on the value of the bifurcation

parameter cel,21. Reading from right to left in figure 1, we can identify the following sequence

of changes in the second attractor. A coexistence two-cycle is the second attractor if

0:092 , cel;21 , 0:17: The second attractor is a coexistence double-loop for 0:061 ,

cel;21 , 0:092: As cel,21 drops through 0.061, the double-loop vanishes, leaving the vertical

axis equilibrium as the only attractor.

Figure 2 shows the double-loop coexistence attractor for cel;21 ¼ 0:062; and figure 3 displays

the corresponding time series for adults (top panel) and larvae (bottom panel) of both species.

Figure 2. Deterministic double-loop using the parameter values in table I. Initial condition is the same as that in the
Park experiment, namely, (0,0,4,0,0,4). After roughly ten time steps the orbit moves onto the attractor.
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Our working hypothesis is that this is the underlying deterministic skeleton for the recalcitrant

mixed species culture of T. confusum strain bII and T. castaneum strain cIV [18].

The situation on the horizontal axis is somewhat complex. A two-cycle with coordinates

ð9:36; 247:55; 45:48; 0; 0; 0Þ; ð309:43; 7:49; 52:59; 0; 0; 0Þ

acts as an attractor in the absence of species two. A horizontal-axis equilibrium

(98.36,78.69,40.93,0,0,0) is unstable within the axis. The Jacobian evaluated at this unstable

equilibrium has five eigenvalues inside the unit circle

l1;2 ¼ 20:0026 ^ 0:06754i

l3 ¼ 20:1586

l4 ¼ 0:86528

l5 ¼ 0:59352

and one eigenvalue

l6 ¼ 21:1219

outside the unit circle. The equilibrium is therefore a saddle with a 5-dimensional stable

manifold and 1-dimensional unstable manifold. The eigenvector associated with l6 is (0.814,

20.58, 0.026, 0,0,0); hence the 1-dimensional unstable manifold lies within the horizontal

axis. As a result, this equilibrium, though unstable, exerts a strong pull on orbits, even those

with initial conditions far from the horizontal axis.

Figure 3. Top panel. Adult numbers of species one and species two associated with the double-loop in figure 2.
Bottom panel. Larval time series of species one and species two associated with the coexistence double-loop in figure
2. Notice that the two-cycle oscillations in larval numbers are synchronous.
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Figure 4 shows a time series for larvae and adults of both species with an initial condition

of (37,33,15,13,21,71), which is far from the unstable axis equilibrium

(98.36,78.69,40.93,0,0,0), but very close to the stable manifold of this horizontal-axis

equilibrium. We will see that this unstable equilibrium (with its 5-dimensional stable

manifold and 1-dimensional unstable manifold) plays an important role in the extinction of

species two in a stochastic version of the competition model.

3.2 Stochastic double-loop hypothesis

Probabilistic variation, in such fundamental biological processes as the number of eggs a

beetle oviposits and egg survival in the presence of egg-eating larvae and adults, is part of

flour beetle dynamics. The aggregation of these demographic events within the life stages

was described by the binomial and Poisson distributions in a single species model [6]. That

stochastic formulation can be easily extended to the two-species case.

In the stochastic model, the system variables L1;tþ1; P1;tþ1; A1;tþ1; L2;tþ1; P2;tþ1; and A2;tþ1

are random variables whose probability distributions are dependent upon the values of

the system variables realized in time t. In what follows, upper case letters are used to denote

the random variables and lower case letters the realized values that the random variables are

conditioned upon.

The random variable describing the number of L1-stage animals at time t þ 1 is a compound

process: a random number of potential recruits is produced (with conditional mean b1a1,t), and

each potential recruit subsequently undergoes a survival process where the conditional survival

probability, e2cel;11l1;t2cea;11a1;t2cel;12l2;t2cea;12a2;t ; depends on the system state variables l1;t; l2;t; a1;t;

and a2;t:Weassumed that the number of potential recruits has a Poisson distributionwith amean

Figure 4. Time series displaying the influence of the 5-dimentional stable manifold associated with the unstable
axis equilibrium (98.36,78.69,40.93,0,0,0) of species one. The initial condition is (37,33,15,13,21,71).
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of b1a1;t; and that the number of subsequent survivors has a binomial distribution. Thus, the

conditional distribution of L1;tþ1 given L1;t ¼ l1;t; L2;t ¼ l2;t; A1;t ¼ a1;t; and A2;t ¼ a2;t
becomes a Poisson distribution with mean b1a1;te

2cel;11l1;t2cea;11a1;t2cel;12l2;t2cea;12a2;t :

The number of P1-stage animals at time t þ 1 is produced by a random survival process.

Each of the l1;t larvae are at risk of death with probability ml;1: Therefore, the distribution of

P1;tþ1 given L1;t ¼ l1;t was taken to have a binomial ðl1;t; ð12 ml;1ÞÞ; distribution.

The number of A1-stage animals at time t þ 1 is the sum of two independent survival

processes: recruits from the P1-stage, denoted R1;tþ1; which survived cannibalism with

probability e2cpa;11a1;t2cpa;12a2;t to become adults, and surviving adults, denoted S1;tþ1; which

made the transition from time t to time t þ 1 with probability 1 2 ma;1: We assumed a

binomial distribution for both these survival processes.

Similar assumptions were made for species two to produce the following Poisson–

binomial (PB) model for two competing species:

L1;tþ1 , Poisson ðb1a1;te
2cel;11l1;t2cea;11a1;t2cel;12l2;t2cea;12a2;t Þ

P1;tþ1 , binomial ðl1;t; 12 ml;1Þ

R1;tþ1 , binomial ðp1;t; e
2cpa;11a1;t2cpa;12a2;t Þ

S1;tþ1 , binomial ða1;t; 12 ma;1Þ

A1;tþ1 ¼ R1;tþ1 þ S1;tþ1

L2;tþ1 , Poisson ðb2a2;te
2cel;21l1;t2cea;21a1;t2cel;22l2;t2cea;22a2;t Þ

P2;tþ1 , binomial ðl2;t; 12 ml;2Þ

R2;tþ1 , binomial ðp2;t; e
2cpa;21a1;t2cpa;22a2;t Þ

S2;tþ1 , binomial ða2;t; 12 ma;2Þ

A2;tþ1 ¼ R2;tþ1 þ S2;tþ1

ð7Þ

here “ , ” means “is distributed as.”

The expectation of the stochastic process is the same as the deterministic model (1), but the

stochastic dynamics are confined to the 6-dimensional lattice of non-negative integers [11].

The latter is an important consideration when dealing with population extinction.

A stochastic outcome diagram is a counterpart to a bifurcation diagram that summarizes the

model-predicted, long term outcomes of a stochastic model (see the bottom panel of figure 1).

The frequency of occurrences of five time series patterns, based on the time a species goes

extinct, are identified: the early or late loss of species one, the early or late loss of species two and

coexistence. (Extinction of both species is a possibility, but it was never observed in the

experiments or in anyofour simulations.)Early eliminationwasdefinedas the loss of a species in

the time interval 0 , t # 60; late loss in the interval 60 , t # 150; and coexistence as the

presence of both species at t . 150: The frequency of each of these events was computed using

the parameters in table I for 10000 PB-model realizations for cel,21 from 0.00 to 0.10 every

0.0025.The results are presentedas afilled area chart, so theheightof thefill is the proportionof a

certain outcome. For example, with cel;21 ¼ 0:01 there is a predicted early loss of species one in

approximately 85% of the realizations and a late loss of species one in 15% of the runs; species

one is always lost. As cel,21 increases, there is a reduction in the frequency of the early loss of

species one and a corresponding increase in the late loss of species one. Just beyond the value of
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cel;21 ¼ 0:04 there is a qualitative change in the stochastic model-predicted outcomes. For

example, at cel;21 ¼ 0:055 the model predicts the simultaneous occurrence of all five possible

outcomes. Thatmeans that in an experimentwithmany replicates the forecast is that species one

is lost in 50% of the replicates, species two is lost in 30% and the species coexist in 20% of

the replicates. Deterministically species one is always lost. Stochastically the forecast is

the probability of a particular outcome. This region of the stochastic outcome diagram

corresponds to what Park called a “zone of indeterminism,” a phrase he introduced into ecology

in 1956 [16]. Although in Park’s case he forecast the loss of either species one or species two;

coexistence was not predicted by his model.

The traditional bifurcation diagram together with the stochastic outcome graph give us

the opportunity to address a fundamental question of population theory: How do

deterministic forces and stochastic events combine to produce population trajectories? For

example, when cel;21 ¼ 0:062 the deterministic orbit with initial condition (0,0,4,0,0,4)

leads to species coexistence (figures 2 and 3). However, by time t ¼ 150 in the PB model,

only 30% of the stochastic realizations lead to coexistence, while 15% result in the of loss

of species one and 55% of the stochastic runs to a loss of species two (see figure 1 bottom

panel). A clue to understanding the interplay of the deterministic forces and stochastic

fluctuations may involve the 5-dimensional stable manifold and the 1-dimensional unstable

manifold of the unstable equilibrium of species one. With an initial stage vector of 4 adults

of each species (Park’s experimental condition) the unstable equilibrium and its stable and

unstable manifolds have little influence on the deterministic model orbit. However,

demographic variability, as given in the PB model of species competition, allows for the

possibility that an orbit will be placed by chance near the stable manifold of the unstable

equilibrium and species two will be pulled toward extinction (figures 5 and 6).

The stochastic PB model (7) was used to further investigate the hypothesis that the

5-dimensional stable manifold of the unstable horizontal-axis equilibrium plays a role in the

extinction of species two. If this hypothesis is true, then extinction of species two should coincide

with a “flyby” of the unstable axis equilibrium by species one. To evaluate this hypothesis, we

calculated the Euclidian distance between the realizations of the stochastic model and the

unstable axis equilibrium for both species:

d1;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1;t 2 L*1
� �2

þ P1;t 2 P*
1

� �2
þ A1;t 2 A*

1

� �2q
ð8Þ

d2;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L22;t þ P2

2;t þ A2
2;t

q
ð9Þ

where ðL*
1;P

*
1;A

*
1Þ ¼ ð98:36; 78:69; 40:93Þ:We then chose simulations of the PB model with the

initial condition (0,0,4,0,0,4) from the Park experiment which met each of the following

conditions: (i) d2;t . 20 at t ¼ 50; (ii) d2;t , 20 at t ¼ 60; (iii) d2;t ¼ 0 for t $ 100:

These conditions ensured that stochastic extinction events of species two are more or less aligned

in time. We ran the PB stochastic model until 100 realizations had been accumulated that met

these criteria. On the left side of figure 7 are plotted d1,t and d2,t for the first five realizations; the

mean of all 100 realizations are plotted on the right side of figure 7.Whenever species two goes

extinct ðd2;t ! 0Þ; there is a decrease in d1,t, indicating a trajectory that passes near the unstable

axis equilibrium. Although the exact timing and “nearness” of the flyby varies from one

stochastic realization to the next, it happens in a consistent and predictable manner, lending

support to the hypothesis of the 5-dimensional stable manifold as factor in the extinction of

species two.
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4. Discussion

A stochastic double-loop hypothesis is proposed as an explanation for the adult time series

pattern observed in the mixed species culture of strain cIV of T. castaneum and strain bII of

T. confusum (figure 5, top panel). A statement of the hypothesis and how it explains the data

are summarized as follows:

1. A coexistence double-loop is the attractor of the deterministic model.

2. Associated with the unstable axis equilibrium (98.36, 78.69, 40.93, 0,0,0) of

T. castaneum, are a 5-dimensional stable manifold and a 1-dimensional unstable

manifold.

3. The deterministic model, for the initial conditions used in the Park experiment, predicts

that the two species will coexist. Coexistence was not observed; T. confusum was lost.

4. Probabilistic variation incorporated into the model gives rise to a stochastic double-loop

hypothesis.

5. In the stochastic model 55% of the realizations resulted in the loss of T. confusum.

6. The proposed explanation of the loss of T. confusum is based on the influence of the stable

and unstable manifolds of the unstable axis equilibrium of T. castaneum.

Figure 5. Top panel. Adult data observed in Park et al. (1964, Table L, p.160), T. castaneum strain cIV and
T. confusum strain bII. Bottom panel. Stochastic model simulation of adult numbers of species one and species two
with the same initial conditions as in the Park experiment, (0,0,4,0,0,4), using the parameter values given in table I.
Notice that at time step 48 the two species community, (15,41,19,4,92,74), starts to be drawn toward the unstable axis
equilibrium of species one under the influence of the stable manifold. The result is the extinction of species two. See
figure 6 for a display of the larval numbers of each species.
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7. Our interpretation of the data is that demographic chance events pushed the two species

culture close to the stable manifold of the unstable axis equilibrium, which then resulted

in the two species community being drawn toward the unstable axis equilibrium of

T. castaneum with the subsequent loss of T. confusum.

The observed adult time series pattern (figure 5, top panel) is similar to that predicted by a

realization of the stochastic model influenced by the stable manifold (figure 5, bottom panel).

The model-predicted larval time series also reveals the influence of the stable manifold (figure 6).

Repeated simulations of the stochastic model in which T. confusum goes extinct reveal a

consistent trend whereby the trajectory of the two species system brings T. castaneum near its

unstable axis equilibrium as T. confusum is lost, lending support to hypothesis that the

5-dimensional stable manifold is a factor in bringing about the extinction of T. confusum.

Under ideal circumstances, one could explore the stochastic double-loop hypothesis in

more detail with more complete analyses of the experimental data. Following the paradigm

of Cushing et al. [4], this would include parameter estimation and model validation.

Unfortunately, the only source for the Tribolium competition data is the original publication

by Park and his colleagues [18] which, except for a few replicates, contains only time series

data for the mean number of adults. Larvae and pupae of T. castaneum and T. confusum were

not recorded in the Park experiment. More complete tests of the model, including the double-

loop hypothesis, await further experimentation.

The bifurcation and stochastic outcome diagrams in figure 1 suggest a tentative explanation of

a central feature of the Park experiment [18], namely, “one strain of T. castaneum (cI) invariably

Figure 6. Stochastic model simulation of larval numbers of species one and species two with initial condition
(0,0,4,0,0,4) showing the influence of the stable 5-dimentional stable manifold. Notice that at time step 48 the two
species community, (15,41,19,4,92,74), starts to be drawn toward the unstable axis equilibrium of species one which
results in the extinction of species two.
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wins every encounter with T. confusum; another strain (cIV) usually wins its encounters, while

the two other strains (cII and cIII) usually lose their encounters.” Returning to the stochastic

outcome graph, if we associate different values of the bifurcation parameter, cel,21, with the

genetic strains of T. castaneum we obtain an interpretation of the above quotation. With small

values of the bifurcation parameter, the T. castaneum strains cII and cIII are forecast to lose their

encounters with the genetic strains ofT. confusum; with an intermediate value of cel,21 strain cIV

is predicted to sometimes win and sometimes lose its encounters; with a slightly larger value of

cel,21 strain cI is forecast to invariably win every encounter with each genetic strain of T.

confusum. Interestingly, in egg-eating assay experiments, Park and his colleagues [19]

determined the ordering by genetic strain of the rates of T. castaneum larvae eating T. confusum

eggs to be cII < cIII ! cIV , cI;which is consistentwith themodel predictions.However,we

recognize that these genetic strains may differ with respect to other parameters and that more

rigorous tests of the model will require additional study.

For the particular set of parameter values that we investigated (table I), the LPA model

makes a prediction that is different from the predictions based on classical Lotka-Volterra

competition theory, namely, that species coexistence is enhanced when interspecific

competition is sufficiently strong, i.e. cel;21 . 0:05: This result is consistent with the

application of the LPA model to the mixed species data of T. castaneum strain cIV-a and

T. confusum strain bI [7]. Increased competition in a consumer/resource model has also been

shown to promote species coexistence [21].

Figure 7. Realizations of the stochastic PB model where species two goes extinct within the interval 50 , t # 100
(dashed lines). The distance of species one from its unstable axis equilibrium (98.36,78.69,40.93) is plotted in the top
two graphs and the distance of species two from the extinction point (0,0,0) is plotted in the lower two graphs. In the
left panels are five realizations of the stochastic model; on the right are the mean trajectories for 100 stochastic
realizations. Associated with the extinction of species two is a flyby of the unstable axis equilibrium by species one.
See text for additional details.
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Park’s “principle of competitive indeterminacy” stimulated mathematical model builders

to examine the role of chance events in multi-species communities [1, 13, 20]. Stochastic

models are increasingly important in the characterization of ecological dynamics [2–4]. In

this paper, we continue the tradition of using flour beetles to explore stochastic population

theory by introducing a stochastic outcome diagram which extends the traditional

deterministic bifurcation diagram by summarizing the long term stochastic outcomes. These

two diagrams placed together as in figure 1 provide a more complete picture of the dynamics

than either diagram presented separately.
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