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 STABLE DEMOGRAPHIC LIMIT CYCLES
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 New York, 10021-6399, U.S.A.

 SUMMARY

 (1) We present a general population matrix model in which the age-specific vital rates
 depend upon the age structure of the population. The fecundity and survivorship of each
 age-class are assumed to decrease exponentially at rates which depend on the densities of
 each age-class. We specialize this model to describe the physiological and behavioural
 interactions among eggs, larvae, pupae and adults in laboratory populations of Tribolium
 flour beetles.

 (2) A non-trivial equilibrium age structure exists provided the population can grow
 without density dependence. If such an equilibrium exists, it is unique. We linearize the
 model in the neighbourhood of its equilibrium and state the necessary and sufficient
 conditions for local asymptotic stability.

 (3) Using several simplifying assumptions, we estimate the parameters of the model
 using data from our own work and from the literature. With these estimates we predict the
 existence of an unstable equilibrium age structure.

 (4) Computer simulations are used to compare the behaviour of the model with census
 data from experimental populations of Tribolium castaneum. After 70 days of culture, the
 experimental populations were subjected to demographic perturbations. Both the
 simulations and the experimental populations exhibit stable oscillations. In general, there
 is good agreement between the model and the data.

 (5) We simulated the model using a variety of parameter values. We show how each
 parameter affects the equilibrium and stability of the model. Increases in the rates of
 mortality or rates of egg and pupal cannibalism by adults are stabilizing, while high rates
 of fecundity or egg cannibalism by larvae lead to demographic oscillations. For each
 parameter, we obtain numerical estimates of the threshold between a stable and unstable
 point equilibrium.

 (6) Considering the variation in the rates of survivorship, reproduction, and cannibal-
 ism reported in the literature for different species and genetic strains of Tribolium under
 different environmental conditions, we conclude that laboratory populations of Tribo-
 lium can exhibit dynamic behaviours ranging from stable equilibria to demographic limit
 cycles.

 * Present address: Department of Mathematics, Beijing Normal University, Beijing, People's Republic of
 China.
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 Limit cycles in Tribolium

 INTRODUCTION

 In an age-structured population, negative density dependence involves inhibition of the
 reproduction and survivorship of one or more age-classes. In an effort to extend the linear
 matrix formulations of Bernardelli (1941), Lewis (1942), and Leslie (1945), many authors
 have incorporated density dependence by making the elements of the population
 projection matrix vary with the age distribution or density of the population (Leslie 1948,
 1959; Williamson 1959, 1974; Pennycuick, Compton & Beckingham 1968; Usher 1972;
 Allen & Basasibwaki 1974; Cook & Leon 1976; Guckenheimer, Oster & Ipaktchi 1977;
 Levin & Goodyear 1980; Fisher & Goh 1984; Ziebur 1984; Desharnais & Cohen 1986; Liu
 & Cohen 1987). These types of models can exhibit very complicated dynamics, ranging
 from stable points to strange attractors. Their application requires detailed biological
 information on the mechanisms of density dependence which is unavailable for most
 species. For this reason, density-dependent matrix models are seldom confronted with
 experimental data (for exceptions, see Pennycuick 1969; Beddington 1974; McKelvey et
 al. 1980; and the continuous-time formulations of Botsford & Wickham 1978; Nisbet &
 Gurney 1982; Gurney, Nisbet & Lawton 1983).

 Flour beetles of the genus Tribolium have been used extensively in ecological research
 for almost 60 years. (For reviews, see Mertz 1972; King & Dawson 1972; Sokoloff 1972,
 1974, 1977.) There exist well documented density-dependent interactions among the life
 stages including, most importantly, cannibalism (Park et al. 1965). Regular cycles in the
 age classes are often observed, even under constant laboratory conditions (Chapman
 1933; Mertz 1969). These attributes make Tribolium populations attractive subjects for
 demographic analysis using density-dependent matrix models.

 Since Chapman's (1928) pioneering use of Tribolium in population research, there have
 been numerous theoretical studies of the population dynamics of these beetles. Sokoloff
 (1974; pp. 536-562) provides a chronological summary of many of the mathematical
 models. Although these models run the gamut from simple difference and differential
 equations to complex computer programs, to our knowledge, there have been no
 investigations of the population dynamics of Tribolium using the standard matrix
 approach.

 In the current study, we present a general model by Liu & Cohen (1987) which allows
 age-dependent interactions to suppress the reproduction and survivorship of each age-
 class. With assumptions based on the biology and behaviour of flour beetles, we apply this
 model to the complex dynamics of laboratory populations of Tribolium castaneum
 Herbst. We estimate the parameters of the model using data from the literature and
 evaluate the performance of the model using the data of Desharnais & Costantino (1980).
 Our results support the view that demographic oscillations in Tribolium can be viewed as a
 stable demographic limit cycle.

 MATRIX MODELS

 General matrix model

 Consider the logistic model of population growth,

 dN/dt=[r-y N(t)] N(t). (1)

 In the case of discrete time, assume that N(t) remains constant in the interval k < t < k + 1,
 where k=0, 1, 2, .... Dividing model (1) by N(t) and integrating from k to k+ 1 gives
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 N(k+ 1)=exp[r-y N(k)] N(k) = exp[-y N(k)] N(k). (2)

 A = er is the rate of increase of the population without density dependence and y measures
 the sensitivity of population growth to increase in density. This difference equation has
 been studied extensively by May (1974), May & Oster (1976), and Fisher & Goh (1984).

 Liu & Cohen (1987) propose the following density-dependent matrix model as a natural
 extension of model (2):

 N(k+ 1)=M[N(k)] N(k), (3)

 where N(k) = [nl(k), n2(k), . . ., n(o (k)]T is a column vector representing the age structure
 of the population at time k (the superscript T stands for matrix transposition) and

 'filEi[N(k)] f2E2[N(k)] ... foj-_oE-_[N(k)] f?d[N(k)]
 slEi(N(k)) 0 . .. 0 0

 0 s2E2[N(k)] . . . 0 0

 M[N(k)]= . . . . . (4)

 0 0 . . . s-iEw,l[N(k)] 0

 The constants fi and si represent the density-independent fertility and survivorship,
 respectively, of an individual of age i. Density-dependence is incorporated through the
 exponential functions

 co

 Ei[N(k)] = exp[- E Yj n(k)], i = 1, 2,..., co, (5a)
 j= 1

 o)

 Ei[N(k)] = exp[- E yij nj(k)], i = 1, 2,... , o, (5b)
 j=

 where ~y measures the sensitivity of the fertility of an individual of age i to the density of
 individuals of age j and yyj is defined similarly for survivorship. Since eqns (3)-(5) are a
 multidimensional extension of model (2), Liu & Cohen (1987) call this model the logistic
 matrix model.

 The vector N* is called an equilibrium population if N* = M(N*)N*. Conditions for the
 existence, uniqueness, and stability of N* are presented in Liu & Cohen (1987). We now
 focus our attention on an application of the logistic matrix model to Tribolium.

 Tribolium matrix model

 Populations of flour beetles of the genus Tribolium are composed of four life stages
 (eggs, larvae, pupae, and adults), among which there are behavioural interactions. For
 several genetic strains of the species T. castaneum and T. confusum, Park et al. (1965) have
 shown that under crowded conditions adults and larvae cannibalize eggs and adults
 cannibalize pupae. Larvae were also shown to cannibalize pupae in some strains, but the
 magnitude of this interaction seems less important. In addition to cannibalism, Rich
 (1956) has also shown that the fecundity of females decreases with increases in the density
 of adults. Although other life-stage interactions have been documented, they seem to be
 less important in the regulation of population densities, and so we shall specialize the
 logistic matrix model based on the following assumptions: (i) larvae and adults
 cannibalize eggs at rates independent of the ages of the eggs; (ii) adults cannibalize pupae
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 Limit cycles in Tribolium

 at rates independent of the ages of the pupae; (iii) larval and adult mortality is density-
 independent; and (iv) the density of the immature life stages does not affect the fecundity
 rates of females.

 Let the interger co > 0 represent the maximum age of a beetle in some discrete time unit.
 Let E be a subset of the intergers { 1, 2,. . , cow} such that a beetle of age i is an egg if and only
 if icE. Let the sets L, P, and A be defined similarly for the larval, pupal, and adult stages,
 respectively. Considering assumptions (i)-(iii) above, we let yij= =Ej for ieE and jeL, A;
 ij = ypj for ieP and jeA; otherwise yi = 0. Assumption (iv) implies yij = 0 wheneverj e E, L,
 or P. For the Tribolium model we have

 nI(k + 1) = E nj(k) fj exp[- Z jh nh(k)], (6a)
 j,eA heA

 ni+ I(k + 1) = ni(k) si exp[- E yE nj(k)- E YE] n(k)], icE, (6b)
 jc L jcE A

 jeL ni+ I(k + 1) = ni(k) si, ieA, i c. (6e)

 Equation (6a) describes the rate at which eggs enter the population and (6b)-(6e) describe
 the survivorship of eggs, larvae, pupae, and adults, respectively.

 Equilibrium and stability

 Under what conditions does the Tribolium model possess a non-trivial equilibrium?
 Can the model possess multiple non-trivial equilibria? Answers to these questions are
 given as follows.
 Theorem 1. Let N* represent a non-trivial (positive) equilibrium vector of the model (6).

 N* exists if and only if s[M(0)] > 1, where s(M) denotes the spectral radius of the matrix M.
 If N* exists, it is unique.
 This theorem is proved in the appendix. In the proof it is shown that the problem of

 calculating N* can be reduced to the problem of finding the unique real root of a single
 non-linear equation.
 The matrix M(0) represents the linear projection matrix with no density dependence.

 Our theorem says that if the population grows without density dependence (s[M(0)] > 1),
 then with density dependence a single unique equilibrium vector exists.
 The local stability of the equilibrium can be investigated in the usual way by linearizing

 model (6) in the neighbourhood of N*. Let A(k) = N(k)-N* represent deviations from
 the equilibrium. Substituting into model (6) yields

 A(k + 1) = Z A(k) + 0(IAl2), (7)

 where

 Z = [z]=[ [Oni(k+ l)/8nj(k)]N=N*, i,j= 1, 2, . . . , . (8)

 The first row of Z is given by

 1 0 j E,L,P, (9a)

 heA
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 FIG. 1. Data used to estimate several of the parameters of the Tribolium matrix model. See text for
 details.

 F = fj exp[- E yjh n] for je A,
 heA

 and the remaining elements are obtained using

 =--i + 1 ni,
 = --Ej ni+ 1,
 = -ypjni+,
 = 0

 j=i, i#wo.
 je L,A,ieE.

 jeA, ieP.
 elsewhere.

 We state without proof the usual condition for stability as:
 Theorem 2. The non-trivial equilibrium N* is asymptotically locally stable if and only if

 s(Z) < 1.

 PARAMETER ESTIMATES

 Using various sources of data from our own work and from the literature, we have
 obtained crude estimates of the parameters of the model (6). To make the model more
 tractable and to make parameter estimation easier, we have made several simplifications.

 (a)

 . O

 800

 6-00-

 889

 5a)
 IL  4-00-
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 where

 zi+ i  (9b)
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 Limit cycles in Tribolium

 TABLE 1. Parameter estimates for the Tribolium matrix model

 Parameter Description Estimated value Source of data

 ac Maximum fecundity 7-96+0-20 Moffa (1976)
 P/ Decrease in fecundity 0.0664 + 00028 Moffa (1976)

 with age
 K Decrease in fecundity 0-00164+ 000006 Rich (1956)

 from crowding
 #L Larval mortality 0-251 + 0-002 Present study
 PHA Adult mortality 0-0130+0.0009 Desharnais &

 Costantino (1980)
 CEL Larval cannibalism 0-000760+0-000047 Park et al. (1965)

 of eggs (slope)
 CEA Adult cannibalism 0-00252+ 000016 Rich (1956)

 of eggs
 CPA Adult cannibalism 0-00558 +0-00026 Jillson &

 of pupae Costantino (1980)

 Our strategy has been to keep the number of parameters as small as possible while trying
 to retain the significant aspects of Tribolium physiology and behaviour.
 We begin by fixing the duration of each life stage at values which are consistent with the

 biology of the corn oil sensitive (cos) strain of Tribolium castaneum which we maintain in
 our laboratory. (For a description of the biology of the cos mutant, see Scully &
 Costantino (1975) and Moffa & Costantino (1977).) Using a basic time unit of one day we
 have E=={1, 2, 3}, L={4, 5,..., 23}, P={24, 25, 26}, and A={27, 28, . .. , co= 300}. We
 emphasize that these values are particular to our own culture conditions and may not be
 appropriate for other Tribolium species and genetic strains.

 The fecundity of Tribolium females tends to peak early and decrease with age. The
 simplest assumption is a linear rate of decrease, so we use

 = la=[-:(/-# )], jeA, j < e+int(x/f3),
 fi = ()

 = 0, elsewhere,

 where e=min (A). In Fig. la we have plotted the data of Moffa (1976; p. 51) for the cos
 strain of T. castaneum. Since Tribolium populations generally maintain a 1: 1 sex ratio, we
 define the fecundity rate as one-half the number of eggs laid per female per day.
 Parameters a and ,f were estimated using linear least-squares regression. The regression
 line of Fig. 1 a is highly significant (P < 0 001). The estimates of ca and ft and their standard
 errors are given in Table 1.
 The data of Rich (1956) indicate that fecundity drops as adults become crowded. We

 have assumed that all adults contribute equally this effect and that all females are equally
 sensitive to crowding. In eqn (6a) we used

 - K, jeA, ieA,

 = 0, otherwise,

 where K is the rate of decrease in fecundity with adult crowding. Using the data of Rich
 (1956) Table IV, we have plotted the natural logarithm of the daily fecundity rate as a
 function of adult density in Fig. lb. So that all parameter estimates are commensurate
 with the population experiments which we present later, here and throughout we express
 density in numbers per 20 g of media. In Fig. 1 b, the different symbols represent different
 durations of exposure in the experimental design (Rich 1956). Pooling these data, we fit
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 R. A. DESHARNAIS AND L. LIU

 linear (solid line) and quadratic (broken line) functions by the method of least squares.
 Although both functions fit well (P<0.001), a test for lack of fit (Searle 1971; p. 103)
 suggests that the linear model is inadequate (lack of fit is significant at P <0.001).
 Nevertheless, to preserve the exponential assumption, we have used the linear regression.
 Parameter K was estimated as the absolute value of the slope of the solid line in Fig. 1 b.
 The estimate value and its standard error appear in Table 1.

 We now consider survivorship. As a first approximation, we will assume a homoge-
 neous mortality rate within each age-class. Let /s denote the density-independent
 mortality rate for age-class S, where S = E, L, P, or A. In general, the density-independent

 survival rates of the immature stages are high. For eggs and pupae, we set Y1EP= =0.
 However, for the cos strain of T. castaneum, larval viability is decreased when the media
 contains unsaturated fatty acids (Scully & Costantino 1975). To estimate larval
 survivorship, we used unpublished data from the experimental study of Desharnais &
 Costantino (1980). They isolated adults from each of four of their control populations
 and placed them on standard media for 24 h. A total of 250 eggs were collected from each
 group of adults and placed on corn oil media. Larvae were recovered 16 days later. For
 each batch of eggs, we use the natural logarithm of the survivorship divided by the
 duration of time spent as larvae (13 days = 16 days- 3 days as eggs) as a crude estimate of
 the larval mortality rate. The average of the four mortality rates is our estimate of L. This
 average and its standard error appear in Table 1. For adult mortality, we used the census
 data from the four control populations of Desharnais & Costantino (1980). Since they
 censused the populations every 2 weeks, we divided the number of dead adults at week
 n + 2 by the average number of live adults at weeks n and n + 2 for n =0, 2, ..., 36. We
 subtracted these ratios from one, took their natural logarithms, and divided by the census
 period (14 days) to obtain mortality rates. The average of these seventy-six observations is

 our estimate of /A (Table 1). To check for density dependence, we plotted these mortality
 rates against the corresponding number of live adults. No functional relationship was
 noticeable (r=-0 055, P> 0-6). To summarize, we have in model (6)

 =1, icE

 =exp(- L), ieL
 Si - iP (12)

 =exp(-PA), ieA

 We estimated the rates of egg cannibalism by larvae. From hatching to pupation, larvae
 increase in size and in the voracity at which they eat eggs. Park et al. (1965) examined the
 age-specific rates at which larvae of several genetic strains eat eggs. In their Table 10, they
 report the percentage of 100 eggs of T. castaneum eaten by groups of fifty larvae of T.
 castaneum after 48 h in 8 g of media. To convert to cannibalism rates per larvae per day for
 20 g of media, we subtracted the percentage eaten from one, took the natural logarithm,
 and divided by 250 ([50 larvae/8 g] x [2 days] x [20 g]). These rates are plotted as a function
 of larval age in Fig. lc. The different symbols represent the four genetic strains. As an
 approximation, we assumed that egg cannibalism rates by larvae increase linearly from
 zero as larvae get older. Let C'EL denote the slope of this relationship. Our estimate of C'EL
 is the slope of the regression line in Fig. Ic, which is statistically significant (P < 000 1).
 This estimate and its standard error can be found in Table 1. Although a test for lack of fit
 suggests that a non-linear curve would not reduce the sums of squares significantly
 (P > 0-09), a visual inspection of the data in Fig. I c suggests that a sigmoidal curve may be
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 Limit cycles in Tribolium

 more appropriate as a general description of the relationship between larval age and
 cannibalism rates.

 For adults eating eggs, we have assumed a common cannibalism rate for all adult ages.
 We denote this rate as CEA. In his study of egg cannibalism by adults of T. confusum, Rich
 (1956) Table IV, computed 24-h per capita rates for 8 g of media. Although his rates vary
 with adult density and duration of exposure to cannibalism, we scaled his estimates to
 correspond to 20 g of media, and pooled these values to obtain an overall average. This
 estimate of CEA and its standard error appear in Table 1.

 Finally, we turn to cannibalism of pupae by adults. Again we have assumed no age
 dependence among adults. We let CPA denote this cannibalism rate. Using the cos strain of
 T. castaneum, Jillson & Costantino (1980) exposed groups of twenty-six larvae to varying
 densities of adults on 26 g of standard media. In Fig. ld we have plotted the negative
 logarithm of the survival rate through the pupal stage (-loge[proportion surviving]/3
 days as pupae) against the adult density per 20 g of media. A least-squares regression
 confirms a significant linear relationship (P < 0-001) which goes through the origin. Our
 estimate of CPA and its standard error appear in Table 1.

 To summarize our results for cannibalism, in model (6) we used

 = CEL (1 +j- a), jeL,3)
 = CEA' jeA,

 where a = min (L), for the rates of egg eating by larvae and adults, and

 ypj= CPA, JeA, (14)

 for the rate at which adults eat pupae. In our notation, Cuj is the rate at which life stage J
 eats life stage I.

 EXPERIMENTAL DATA AND SIMULATION RESULTS

 Experimental design

 In the analysis that follows, we compare the behaviour of our model with the
 experimental data of Desharnais & Costantino (1980). They assessed demographic
 stability in laboratory populations of the cos strain of T. castaneum by deliberately
 perturbing populations which were near equilibrium. We begin with a brief outline of the
 experimental design.

 Thirteen cultures were initiated with sixty-four young adults, sixteen pupae, twenty
 large larvae, and seventy small larvae. All beetles were homozygous for the cos/cos allele.
 Each population was contained in a half-pint milk bottle with 20 g of corn oil media (90%
 wheat flour, 5% brewer's yeast, and 5% liquid corn oil) and kept in an unlighted incubator
 at 33 + 1 ?C and 56 + 11% relative humidity. Every 2 weeks all age-classes, except eggs,
 were censused and all age-classes, including eggs, were placed in fresh media. This
 procedure was followed for 38 weeks.

 After 10 weeks of culture, each population was randomly assigned to one of four
 treatments. Three of the treatments, each with three replicates, involved demographic
 perturbations and one treatment, with four replicates, served as a control. For the
 demographic perturbations they (i) added 100 adults, (ii) removed all adults, and (iii)
 removed all immatures. The control cultures were not disturbed.
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 TABLE 2. Census data for the experimental populations

 Treatment and replicate

 Day Life stage*

 0 A
 LL+P
 SL

 14 A
 LL+P
 SL

 28 A
 LL+P
 SL

 42 A
 LL+P
 SL

 56 A
 LL+P
 SL

 70 A
 LL+P
 SL

 70 A
 LL+P
 SL

 84 A
 LL+P
 SL

 98 A
 LL+P
 SL

 112 A
 LL+P
 SL

 126 A
 LL+P
 SL

 140 A
 LL+P
 SL

 154 A
 LL+P
 SL

 168 A
 LL+P
 SL

 182 A
 LL+P
 SL

 196 A
 LL+P
 SL

 210 A
 LL+P
 SL

 224 A
 LL+P
 SL

 238 A
 LL+P
 SL

 252 A
 LL+P
 SL

 266 A
 LL+P
 SL

 Control

 a b c

 64 64 64
 35 35 35
 70 70 70

 78 88 77
 4 4 12

 263 198 176

 78 84 79
 109 77 71
 75 75 87

 77 80 76
 28 18 44
 125 111 96
 61 69 61
 77 40 31

 203 226 180

 85 77 46
 71 67 72
 57 31 13

 85 77
 71 67
 57 31

 102 98
 36 11
 182 246

 104 88
 136 127
 27 48

 120 100
 35 8

 265 302

 122 90
 76 154
 32 35

 132 120
 28 20

 309 213

 120 107
 252 156

 8 109

 113 115
 5 48

 360 178

 97 119
 236 141
 24 171

 136 121
 20 73

 357 59

 122 127
 176 75
 13 299

 117 117
 7 114

 373 9

 105 121
 189 54
 14 419

 120 113
 12 157

 404 3

 99 125
 226 9

 2 351

 d

 64
 35
 70

 86
 12

 249

 80
 100
 28

 88
 18

 181

 80
 61

 173

 75
 47
 76

 46 75
 72 47
 13 76

 72 76
 7 36

 222 254

 69 77
 132 119
 125 29

 105 110
 59 27

 146 286

 106 106
 125 62
 101 8

 99 108
 49 5
 124 411

 96 99
 82 232
 156 28

 98 120
 87 6
 69 308

 95 93
 38 193
 164 52

 94 132
 99 12
 80 213

 108 115
 47 130
 187 114

 98 134
 107 52
 69 92

 106 117
 38 81

 293 217
 88 134
 121 73
 42 75

 106 139
 22 63

 215 164

 Adults
 added

 a b c

 64 64 64
 35 35 35
 70 70 70

 76 74 77
 23 18 5
 116 183 257

 76 71 77
 69 103 86
 106 76 46

 73 79 83
 41 43 27
 74 107 171

 67 86 70
 23 34 71
 186 303 229

 39 48 67
 88 167 92
 17 18 19

 Perturbation

 139 148 167
 88 167 92
 17 18 19

 122 127 142
 10 7 13

 289 246 206

 102 111 118
 106 94 82
 35 60 46

 107 106 100
 11 18 23

 277 149 254

 103 83 97
 125 82 112
 43 117 26

 123 105 122
 9 45 5

 325 98 416

 113 100 106
 159 56 227
 54 180 50

 118 89 125
 20 94 19

 251 46 350

 97 92 111
 151 34 142
 112 157 96

 117 88 114
 41 151 40
 216 56 151

 106 118 96
 157 34 51
 113 261 105

 116 111 98
 49 122 72
 181 22 81

 115 131 108
 167 49 77
 206 316 346
 149 130 126
 58 146 131
 144 7 47

 150 119 157
 155 30 139
 204 365 240

 Adults Immatures
 removed removed

 a b c a b c

 64 64 64 64 64 64
 35 35 35 35 35 35
 70 70 70 70 70 70

 74 78 79 76 83 86
 14 7 14 10 4 9
 148 192 189 199 251 195

 77 76 76 76 82 84
 103 58 68 55 108 75
 97 73 63 57 31 48

 78 69 75 74 90 80
 68 22 15 12 11 26
 55 135 134 197 186 93
 73 61 66 63 70 71
 26 63 49 70 86 63
 331 187 169 108 214 165

 54 67 58 96 82 87
 182 81 112 20 70 48
 8 30 24 77 45 51

 Perturbation Perturbation

 0 0 0 96 82 87
 182 81 112 0 0 0
 8 30 24 0 0 0

 171 62 86 71 63 57
 1 36 11 0 0 0

 159 136 183 298 361 434

 168 72 89 71 56 57
 20 67 49 202 189 265
 379 195 204 10 50 11
 169 75 90 139 124 178
 112 102 87 11 18 19
 0 33 21 329 149 205

 162 82 93 121 116 154
 17 40 39 78 128 64
 218 323 366 11 46 2
 147 92 92 113 113 128
 71 141 157 15 14 53
 24 57 33 370 311 212

 137 131 154 98 105 117
 7 32 15 247 181 136

 245 248 314 18 64 20

 121 126 140 130 140 115
 146 108 120 4 34 13
 68 14 8 304 338 354

 150 124 137 119 137 98
 12 12 6 214 214 186
 284 420 319 11 38 14
 134 107 121 140 147 123
 200 177 170 65 12 86
 90 11 24 371 336 365
 125 III 118 121 121 108
 36 28 17 183 192 163
 250 385 289 3 69 2

 117 109 102 144 134 136
 241 202 204 12 27 13
 148 9 31 568 163 412

 141 125 132 130 111 108
 57 28 22 201 237 174
 247 372 295 4 83 4

 134 107 113 145 137 123
 180 143 135 59 19 33
 86 13 19 526 199 382
 131 104 105 130 110 111
 27 18 8 192 129 158
 238 307 271 0 159 6

 * Notation: A = adults; LL + P= large larvae plus pupae; SL = small larvae.
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 The census data appears in Table 2 and Figs 2-6. We have combined the data into three
 age groups: adults (A), large larvae plus pupae (LL + P), and small larvae (SL). Since the
 populations exhibited oscillations which are sometimes out of phase, we have presented
 the data for individual replicates. Figs 2-6 allow a direct comparison of the experimental
 populations to predictions of the model. The observations are represented by symbols
 and were connected with continuous curves using cubic spline interpolation. When
 viewing these data, it should be kept in mind that the census period is coarse in relation to
 the period of the oscillations predicted by the model. We discuss this problem in more
 detail below.

 Equilibrium and stability

 We begin by using Theorem 1 to make a specific prediction for the equilibrium of the
 Tribolium populations. Using the parameter estimates of the previous section (Table 1) in
 eqn (A6) of the appendix, we computed the real dominant eigenvalue A of the density-
 independent matrix M(0) by the method of bisection. We found A = 1-1396. This gives an
 intrinsic rate of increase r= loge (i) = 0-1307 per day, which compares favourably with
 other estimates for T. castaneum under similar conditions of temperature and humidity
 (Sokoloff 1974; Table 11.22). Since the spectral radius s[M(0)] = > 1, Theorem 1
 guarantees the existence of a unique non-trivial equilibrium vector N*. We computed N*
 using eqns (A2)-(A5) of the appendix. To compare the simulation results with the
 experimental data, we divided the larval age groups (days 4-23) into two sets of equal size:
 small larvae (days 4-13) and large larvae (days 14-23). For the equilibrium we predict
 87-87 adults, 68-53 large larvae plus pupae and 75-15 small larvae.

 To evaluate stability, we used N* in eqn (9) to compute the elements of the matrix Z.
 The eigenvalues of this 300 x 300 matrix were kindly computed by Jane Cullum at the
 IBM Research Center in Yorktown Heights, New York, using a new algorithm for large
 sparse non-symmetric matrices (Cullum & Willoughby 1986). Using i= (-1)'/2, we report
 the following observations: (i) all the eigenvalues are distinct; (ii) all the eigenvalues are
 complex conjugates; (iii) the dominant pair of eigenvalues are 1 ,22= 1-0001 +0-2277i;
 (iv) the largest subdominant pair of eigenvalues are ,3, 4 = 09872+_0-1973i; (v)
 AIll > 1 > I231; that is, only the dominant eigenvalues have a modulus that exceeds unity.
 Since s(Z) = ll I = 1 0257> 1, from Theorem 2 we predict that N* for the Tribolium
 populations is an unstable equilibrium. Finally, since Al and 22 dominate the long-term
 behaviour of the linearized model (7), we can use these eigenvalues to obtain an estimate
 of the period of the cycles near N* (Gurney & Nisbet 1985). Letting loge (Al) = a + bi, the
 period is approximately p = 2rc/b. In our case, loge (Al)= 00254 + 0-2234i and p = 28-06
 days. This is close to the generation time of 27 days and compares favourably with the
 period of 26-76 days obtained from a spectral analysis of the simulation results. Details of
 the spectral analysis are presented in a later section.

 Control populations

 The adult densities for the four control populations are plotted in Figs 2a-d. The
 horizontal dashed line in each figure is the expected equilibrium number of adults. We
 iterated the model (6) using the same initial conditions as the experimental populations,
 with a uniform distribution of individuals within the small larval, large larval, and pupal
 age groups, and with all adults at 27 days of age. The adult densities from the simulation
 are presented in Fig. 2e. Although the experimental data shows some fluctuations in adult
 density, there are no regular small amplitude oscillations as in the simulation results.
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 FIG. 2. Density of adults versus time for the four control populations (a-d) and the Tribolium
 matrix model (e). The census points (diamonds) were interpolated using cubic splines. The

 horizontal dashed lines represent the predicted equilibrium density of adults.

 From the observed differences between replicates, it seems possible that stochastic sources
 of variation overwhelm these oscillations. It is also possible that the census period is too
 coarse to detect small amplitude oscillations. In any case, the overall densities of the
 experimental populations agree quite well with the stimulation results. In particular, it is
 interesting that the adult densities fluctuate at levels which exceed the predicted
 equilibrium value (dashed line). This suggests that a time average of adult density would
 be poor predictor of the equilibrium in an unstable system.

 The densities of the immature age-classes for the control populations are ploited in Fig.
 3a-d. The solid curves represent the small larvae and the broken curves are for the large
 larvae plus pupae. There is a definite regularity to the fluctuations of the immature age-
 classes in the experimental populations. These oscillations are very large in magnitude,
 sometimes going from near zero in one census to over 400 individuals in the next. As with
 the adult data, irregularities in the observed oscillations could be due in part to stochastic
 effects. For example, the replicates in Fig. 3a and b seem to be in phase in the first half of
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 FIG. 3. Density of small larvae (solid curves) and large larvae plus pupae (broken curves) versus
 time for the four control populations (a-d) and the Tribolium matrix model (e). The census points

 (triangles) were interpolated using cubic splines.

 the experiment, but out of phase at the end of the experiment, suggesting that the
 periodicity may drift. However, with oscillations of this magnitude and period, another
 potential source of irregularities is the discrete nature of the censusing procedure. The
 observations are spaced at roughly half the period. Under these conditions, is possible for
 two or more adjacent observations to capture densities between the peaks and troughs,
 giving the illusion of little or no fluctuation.

 The simulation results appear in Fig. 3e. Qualitatively, there is good agreement between
 the model's behaviour and the dynamics of the Tribolium populations. The amplitudes of
 the oscillations and their period are roughly equal. The oscillations of the small larvae are
 also out of phase with the oscillations of large larvae plus pupae. It is not possible to
 directly compare the shapes of the oscillations, since the curves for the experimental data
 are determined by cubic splines. However, when the simulation data is periodically
 sampled every 14 days and these data are interpolated with splines, there is a drift in
 amplitude of the peaks and troughs, indicating that the periodicity of the simulation data
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 is not an integral multiple of the census period. A precise estimate of the periodicity of the
 simulation results is presented in a later section.

 Demographic perturbations

 In three replicates comprising one treatment, 100 adults were added at day 70. The
 adult densities for these populations are presented in Fig. 4a-c. The vertical dashed line
 represents the perturbation. After the perturbation, adult numbers decreased to a density
 level which is comparable to the controls. In Fig. 4d we show the results for the model (6),
 which was subjected to the same perturbation. The rate of return of the adult densities to
 the unperturbed levels is approximately the same for the theoretical model and the
 experimental populations. In the census periods following the perturbation the densities
 of the immature stages continue to oscillate in a manner similar to the control population
 (Table 2).
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 FIG. 4. Density of adults versus time for the three experimental populations (a-c) and the
 Tribolium matrix model (d) where 100 adults were added at day 70. The census points (diamonds)

 were interpolated using cubic splines. The vertical dashed lines represent the perturbation.
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 FIG. 5. Density of adults versus time for the three experimental populations (a-c) and the
 Tribolium matrix model (d) where all adults were removed at day seventy. The census points
 (diamonds) were interpolated using cubic splines. The vertical dashed lines represent the

 perturbation.

 In Fig. 5a-c, we present the results for the three populations in which all adults were
 removed at day 70. In two of the populations (Fig. 5b, c), there was a rapid return of adult
 density to the unperturbed level. This same pattern is predicted by the model (Fig. 5d).
 The remaining experimental culture overshoots the unperturbed density level and then
 gradually decreases to the same level as the controls (Fig. 5a). An examination of Table 2
 reveals that there was a large cohort of potential recruits (182 large larvae plus pupae) in
 this population at the time that the adults were removed. In all three experimental
 populations, the oscillations of the immature life stages persist after the perturbations
 (Table 2).

 In the last treatment, all immatures were removed at day 70. The adult densities for
 these populations are presented in Fig. 6. As expected, there was a decline in adult density
 following the perturbation. In two of the cultures (Fig. 6a, b), this decline was followed by
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 FIG. 6. Density of adults versus time for the three experimental populations (a-c) and the
 Tribolium matrix model (d) where all immatures were removed at day 70. The census points
 (diamonds) were interpolated using cubic splines. The vertical arrows lines represent the

 perturbation.

 a return to the adult densities of the controls. The model displayed similar behaviour (Fig.
 6d). In the population of Fig. 6c, a small overshoot followed the decline in adult density
 before a return to the unperturbed level. In this treatment, the removal of immatures may
 have tended to temporarily synchronize the immature cycles with the census periods
 (Table 2). This could explain the increased regularity of the fluctuations in adult density
 observed in Fig. 6.

 Demographic limit cycle

 The local stability analysis and perturbation results suggest that these Tribolium
 populations possess a stable oscillatory attractor. To visualize this idea, we iterated the
 model (6) using an initial condition which was very close to equilibrium and plotted the
 proportions of adults, large larvae plus pupae and small larvae in Fig. 7. The arrows
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 FIG. 7. Triangular coordinate plot of the population of adults, large larvae plus pupae, and small
 larvae predicted by the Tribolium matrix model when the initial condition is near the unstable

 equilibrium. The arrows indicate the direction of change over time.

 indicate the population trajectory as it spirals away from the equilibrium. We tried several
 other initial conditions, and the trajectories always approach the same loop as the
 simulation in Fig. 7. We feel the asymptotic behaviour of the model can be characterized
 as a stable demographic limit cycle.

 We conducted a spectral analysis to ascertain the period of the limit cycle. The model
 was iterated 50000 times to guarantee asymptotic behaviour. The results from the
 subsequent T= 1001 iterations were used to examine the periodicity. Let NA(l), NA(2),
 . . .NA(T) represent the sequence of adult densities. Define y(t) = NA(t) - [NA()]/T and
 ,=E [y'(t)]2. The quantities a(z) and h(z) can be thought of as 'correlations' of x(t) with
 cos(rt) and sin(rt), respectively, where

 T

 a(T) = (v T)- 1/2 y, y(t) cos(-rt),

 T

 b(c) = (v T) 1-'/2 y y(t) sin(rt),
 f= I

 (15b)

 The spectral density at angular frequency z is given by

 Q()-) = [a(l)]2 + [b()]2  (16)

 (Kendall & Stuart 1968, pp. 410-412). The angular frequency z is related to the period p
 by p = (r)/r. For the adult densities, we obtained a large sharp peak in Q(T) at T = 0234810

 900

 (15a)
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 TABLE 3. Bifurcation values for each parameter

 Bifurcation Ratio to Equilibrium densities Effect of increasing
 Parameter* value estimated value at bifurcation the parameter

 ac 0-718 0-0902 (24-1, 6-8, 7-1)t destabilize
 K 0-0211 12-9 (73-0, 44-8, 48-7) stabilize
 #L 0-0788 3-14 (66-0, 47-6, 92-1) stabilize
 CEL 0-000146 0-192 (132-2, 212-1, 238-1) destabilize
 CEA 0-00896 3-56 (73-1, 44-9, 48-8) stabilize
 CPA 0-187 33-5 (6-3, 36-5, 41-9) stabilize

 * Oscillations persist for all possible values of ft and 11A when the remaining parameters
 have their default values.

 t Number of adults, large larvae plus pupae, and small larvae, respectively.

 which corresponds to a peiod of p = 26-7586 days. An identical result was obtained using
 the number of small larvae. To corroborate this estimate, we computed the number of
 days between adjacent maxima of adult numbers. Adult peaks occurred every 26-27 days
 with an average of 26-75 days. As might be expected, the periodicity of the limit cycle is
 close to the duration of the life cycle (27 days).

 Bifurcation points

 How far away are these Tribolium populations from the stable region of parameter
 space? How do the life history and behavioural traits affect stability? We addressed these
 questions by observing the behaviour of our model for various parameter values. Since
 the simplified version of the model still possesses eight parameters (Table 1), we made no
 attempt to map out the entire region of parameter space. Instead, we defined the estimates
 of Table 1 as the default values, and varied each parameter individually. The method of
 bisection was used to estimate the thresholds at which the model bifurcates from a stable
 point equilibrium into a stable limit cycle.

 The bifurcation points for each parameter appear in Table 3. Oscillations persist for all
 possible values of, and PA when the remaining parameters maintain their default values.
 For the other parameters, we have reported the equilibrium densities at the bifurcation
 point and indicated whether or not the model is stabilized or destabilized when the
 parameter is increased above its bifurcation value.

 The parameters a and CEL are destabilizing and the remaining parameters are
 stabilizing. This suggests that increases in the reproductive rate of flour beetles has a
 destabilizing effect while increases in mortality rates are stabilizing. The same phenome-
 non is true in predator-prey systems (Rosenzweig 1971) and in discrete generation single
 species models (May 1974). As Chapman & Whang (1934) conjectured from some of the
 earliest experiments with Tribolium, an increase in the cannibalism rate of larvae on eggs
 can lead to sustained oscillations. It is interesting that the other forms of cannibalism
 actually have a stabilizing effect. This suggests that the relationship between cannibalism
 and stability depends upon the relative rates at which the active life stages (larvae and
 adults) consume the inactive ones (eggs and pupae). However, we cannot rule out the
 possibility that cannibalism of eggs or pupae by adults are destabilizing for other
 combinations of parameter values.

 In some cases, the bifurcation points are not too far from the estimated values. A 3-14
 factor increase in the larval mortality rate, [L, would be sufficient for stability. A 3-56
 factor increase in the rate at which adults eat eggs, CEA, would have a similar effect.
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 Decreasing the cannibalism rate of eggs by larvae, CEL, to 19-2% of its estimated value
 would also result in a stable equilibrium. Finally, we can reduce the total fecundity and
 maintain the last age of reproduction by scaling both cx and ,f by the same factor. Using the
 method of bisection, we found that stability is obtained when the total fecundity is 18-4%
 of its default value.

 DISCUSSION

 In any attempt to model a biological system, one must confront a trade-off between
 analytical tractability and realism. In the present study, we tried to retain what we feel are
 the most important aspects of the biology of Tribolium in relation to their population
 dynamics while keeping the model as simple as possible. Considering that our
 formulation of the model is based on several crude assumptions and that several of our
 parameter estimates come from published data for different genetic strains and different
 species, the agreement between the model simulations and the experimental data is quite
 good. The relatively small number of parameters in this model allowed us to retain some
 generality and to probe parameter space for insight into the dynamical properties of
 Tribolium populations. Nevertheless, our work falls far short of a complete analytical
 treatment.

 Two recent papers by Hastings (1986) and Hastings & Costantino (1986) provide a
 more analytical treatment of egg cannibalism by larvae in Tribolium. Because adult
 longevity is several times the duration of the life cycle, they assume that the interactions
 between adults and immatures occurs on a slow time-scale relative to the dynamics within
 the immature age-classes. Using the continuous time McKendrick-von Foerster model,
 they focus on a window of the life cycle made up of just eggs and larvae. Adult density is a
 constant in their analysis. With the additional assumption that larvae of all ages eat eggs
 at the same rate, they were able to derive necessary and sufficient conditions for stability in
 terms of the original parameters of the model. They go further to demonstrate that their
 model possesses simultaneously a stable equilibrium and a stable limit cycle over a
 significant range of parameters. The existence of multiple attractors in this egg-larval
 submodel is proven in a theorem by Hastings (1986). Whether this remarkable result is
 true for the more realistic case where cannibalism rates depend upon the age of the larvae
 remains an open question.

 Many of the results of the present study are consistent with the findings of Hastings
 (1986) and Hastings & Costantino (1986). Increases in the rates of fecundity and
 cannibalism by larvae tend to be destabilizing. Increases in the rates of mortality and
 cannibalism by adults are stabilizing. In both models, the period of the oscillations is
 roughly equal to the developmental period. Adult numbers show small oscillations while
 the immature age-classes oscillate wildly. Since these last two observations hold true for
 our experimental data, this lends support to the concept of a fast time-scale for egg-larval
 dynamics and a slow time-scale for immature-adult dynamics.

 There exists a large amount of variability in rates of reproduction, mortality, and
 cannibalism among the various genetic strains and species of Tribolium (Park, Mertz &
 Petrusewicz 1961; Sokoloff 1974). Environmental conditions also affect these biological
 attributes. This raises the interesting possibility of doing 'comparative population
 dynamics,' where one experimentally probes for transitions from stable equilibria to
 stable limit cycles. The numerical work summarized in Table 3 suggests that these
 transition points occur at parameter values which are of the same order of magnitude as
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 those currently existing in laboratory populations. Studies of this sort would help place
 the ideas of Hopf bifurcations and stable limit cycles in population biology on a firmer
 experimental footing.

 Finally, we should point out that our model of cannibalistic interactions, although
 specific to Tribolium in its details, may have relevance to the demography of many natural
 populations. In reviews of interspecific predation, Fox (1975) and Polis (1981) cite over
 forty examples where cannibalism is suggested as a regulator of population size. In fish
 populations, cannibalism by older or larger individuals can cause skewed age or size
 distributions and can sometimes result in violent fluctuations in recruitment (Ricker 1954;
 Radovich 1962; Forney 1976; Holcik 1977; Popova & Sytina 1977; DeAngelis, Cox &
 Coutant 1979). Naturally occurring population cycles have been attributed to age-specific
 cannibalistic interactions in perch (Menshutkin 1964) and in the Dungeness crab Cancer
 magiser (Botsford & Wickham 1978; McKelvey et al. 1980). Our results with Tribolium
 may exemplify a more general class of demographic phenomena.
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 APPENDIX

 Proof of Theorem 1. Assume the positive equilibrium vector N* exists. From model (6)

 n = n* fj exp[- Z Vjhn*], (Ala)
 jeA heA

 nli+ l = ni si exp[- E TEj n - YEnj ], i E, (Alb)
 jeL jeA

 i+l = iL, (Alc)

 n+ 1 = n7 si exp[- yvp n], ieP, (Ald)
 jeA

 i+l = ni si, icA, i co. (Ale)

 Let pi = 1 and
 j-1

 j = H sj for j= 2, 3,. ..,.
 h= I

 We denote the earliest ages in L, P, and A using a = min (L), ( = min (P), and e = min (A).
 From (Alec) and (Ale) we have

 i= n (Pi/PA), ieL, i= (A2
 nl = nI, (pi/pe), icA. (A2b)

 Substituting (A2) into (Ala), (Alb), and (Ald) gives

 n; = n2 E bj exp[ -0j n], (A3a)
 jeA

 ni+ 1 = n 1Pi+ 1 exp[-i (n r/ I + n /2)], ieE, (A3b)

 n i+ = -a (Pi+ i/pa) exp[(C-i- 1) n? r/3)] i eP, (A3c)
 where = (Pi/P) f, Oj jh (P/P)J, forjeA,

 heA

 and q1 = E YEj (P/PZ)/
 j/- L

 je2 = Y PP
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 Limit cycles in Tribolium

 From (A3c) with i=e- 1, we have

 n = n? (p/pR) exp[( e- n? 13]. (A4)

 Substituting (A3a) and (A4) into (A3b) with i= a-1 gives

 f j' pj exp[-nE (Oj + c1 + c2 exp[c3 n])] = 1 (A5)
 jleA

 where cl = (e- )13+ ('- 1)/2, C2 = (- l)(p</pe)11j, and C3 = (e- 3. Since 1 < <~ < ,
 ci>0 for i= 1, 2, 3.

 Replace n* with x and consider the LHS of (A5) as a function G(x). If any of the non-

 negative parameters yu, YEj, or ypj are positive, then G (x) is a monotonic decreasing
 function for x > 0. By assumption, n* > 0 exists and G (n,) = 1. The monotonicity of G (x)
 implies that G (0) > 1 and n* is unique. By substituting backwards from (A4) through (A2),
 it is obvious that n* uniquely determines the entire vector N*.

 Now consider the density-independent Leslie matrix M(O). It is well known from
 demographic theory that M(O), has a real positive eigenvalue A which is not less in
 modulus than any other eigenvalue of M(O). Hence, s(M(O)) = . The characteristic
 polynomial of M(O) is given by

 W(x) = IM(O) - x II = x?- E xa-jfj pj, (A6)
 jeA

 where I is the identity matrix. By definition, A is the largest real root of W(x) = 0. From
 (A5), it is easy to see that G(0) = 1 - W(1). However, the existence of N* implies G(0) > 1.
 This implies W(1) <0. Since limxoo W(x) = oo, W(x)>0 for x> which implies
 A = s(M(O)) > 1.

 Conversely, assume A =s(M(O))> 1. From Descartes' theorem, we know that the
 number of real roots of a polynomial is less than or equal to the number of sign changes in
 its sequence on non-zero coefficients. From (A6), it is obvious that there is one sign change
 in the coefficients of W(x), which means that i is the only real positive root of W(x). Since
 limxoo W(x)= oo and A > 1, W(1)< 0. This implies G(0) > 1. Since G(x) is monotonic
 decreasing for x > 0, there exists a unique number x* which satisfies G(x*) = 1. If we set
 n= x*, then n* satisfies (A5), and we obtain the unique positive vector N*.
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