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ABSTRACT 

The entropy H ( p , , p * )  of a population with the initial allele frequency 
p o  given the equilibrium polymorphic frequency p* has been proposed as a 
measure of natural selection. In the present paper, we have extended this 
concept to include a particular aspect of density-dependent selection. We 
compared size trajectory of a population initially a t  genetic equilibrium, 
h(t), with the size trajectories of populations not initially at p* ,N( t ) ,  but 
which do eventually converge to a common equilibrium allele frequency and 
equilibrium density, A'*. The following experimentally testable hyopthesis 
was established. The total area defined by the difference between the trajec- 
tories of f i ( t )  and N ( t )  as they converge to N* is directly proportional to the 
fitness entropy when population size is transformed using the density- 
dependent fitness value. Two properties of this relationship were noted. First, 
it is independent of the magnitude of natural selection and, secondly, it does 
not depend upon the initial population density as long as the equilibrium and 
nonequilibrium populations have the same initial numbers. This hypothesis 
was evaluated with experimental data on the flour beetle Tnbolium castaneum. 

N the single locus, continuous-time, genetic model of natural selection we I have (CROW and KIMURA 1970) 

k 

j=l where p i  is the frequency 0: the ith allele, the allele fitness is Wi Z Wijpjy 
the average fitness is W = 3, WijpipjY k is the number of alleles and N is the 
population size. 

GINZBURG (1972, 1974, 1977a) introduced into population genetics the equa- 
tion for the entropy between the nonequilibrium p and the equilibrium poly- 
morphic p* allele frequencies as 

1.,3 
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H ( p , p * )  is U-shaped, that is, H is zero when p = p* ,  is positive for any p i p* 
and tends to infinity when p goes to fixation. An interesting property of this func- 
tion is that it can be associated with the grcwtli characteristics of a population. 
Taking the time-derivative of (2 j we have 

Notice that while equation (2) contains only p ,  and p : ,  equation (3) has an  
expression for the change in allele frequency, dp , /d t .  It is this latter relationship 
that we shall now use to associate entropy and natural selection. 

In  the classical model it is assumed that the fitnesses are constant. The deriva- 
tive (3) can be written using ( 1 ) as 

I ,  

d H / d l =  W - 1 = 1  S p * W ,  1 . (4) 

Furthermore, integrating (4) with respect to time from 0 to we arrive at two 
equivalent but different forms for entropy. The first is GINZBURG'S (1977a) 
macro-equation of nature1 selection. 

H(po ,p*)  = W',(po.p*) ( j a )  

where po is the initial allele frequency. W* is the average fitness of the popula- 
tion at  equilibrium and .(po.p*) is the asymptotic time-delay of the real growth 
curve in comparisop. with the equilibrium growth curve N ( t )  = N ( 0 )  exp 
(W*t)  . A second density-independent measure proposed by GINZBURG and 
COSTANTINO ( 1979 j is 

In  this form, the area bounded by the equilibrium value W* and the curve of the 
average fitness at time t.W ( t )  , is equal to the entropy. 

T i e  fitness entropy equations ( 5 )  were experimentally examined by Cos- 
TANTINO, GINZBURG and MOFFA (1977) and GINZBURG and COSTANTINO (1979) 
using data on populations of the flour beetle Tribolium castaneum Herbst 
(MOFFA and COSTANTINO 1977). These equations are restricted to density- 
independent population dynamic;, consequently. the Tribolium data analyses 
were limited to the exponential phase of the population growth. Our objectives 
in this paper are to extend the entropy measure to include an  aspect of density- 
dependent patural se'cct-on and to cvalucte this theoretical outcome with the 
Tribolium data. 

F I T N E S S  E N T R O P Y  

Deizsity-regulated fitness: In  the 1a:t decade. the expanding population size 
perspective of the classical genetic model has been modified by writing the 
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fitness as a function of population size, W, ,  = W,,  ( N ) .  An early example was 
based on the familiar logistic equation of population growth (ANDERSON 1971 ; 
ROUGHGARDEN 1971). CHARLESWORTH (1971) extended the logistic description 
to include functions that are strictly decreasing in population size N .  ROUGH- 
GARDEN (1976) and GINZBURG (1977b) established an analog of FISHER’S funda- 
mental theorem oi  natural selection for density-dependence that asserts that 
selection results in an equilibrium allele frequency that corresponds to a local 
maximum equilibrium pcpulation size. HASTINGS (1978) using the concept of 
an evolutionary stable strategy also showed that selection is expected to result 
in a maximization of population size. 

Our choice for  the density-dependent fitness is 

We will confine our discussion to (6) in which the genetic difference is located 
in a single parameter, N. that enters the fitness value as a linear coefficient. Also 
note the symmetry condition a,, = aj,. Otherwise the restrictions on these func- 
tions satisfy those of GINZBURG (1977b); specifically, W,,(O) > 0, aW,,/aN < 0 
and W,, (N) < 0 far large N .  With this formulation, the average allele fitness. 
W,, and the average fitness of the population, W ,  are 

w, = W(N,(ui) = W i f ( N )  + g ( N )  

w = W ( N , a )  = N f ( N )  + g ( N )  
where 

Statement (6) means that population size does indeed affect the rate of ap- 
proach to genetic equilibrium for 

and for the genetic equilibrium to be asymptotically stable, it must be true that 
f ( N * )  # 0. where N* is the equilibrium population density. However, while N 
does alter the magnitude of change in allele frequency, for k > 3 alleles the 
trajectory of allele frequencies, 

d p , / d p ,  = p, (a , - -a) jp , (a , -a) ,  for all i.i (9) 

is independent of N so that the trajectory (9),  excluding time, is the same as 
in the density-independent case with constant fitnesses. (Note that for k = 2  
alleles the trajectory of frequencies is always independent of N even for more 
general fitnesses than (6) .) Consequently, we shall refer to this special class 
of density-dependent fitnesses as density-regulated natural selection. 
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When all of the k-alleles are maintained by natural selection, the time- 
derivative of the fitness entropy ( 3 )  can be written as 

where a* is the value of the parameter OL at genetic equilibrium (see the 
APPENDIX). 

Let us now consider two populations with the same initial population densi- 
ties. The first population is at genetic equilibrium, p o  = p* ,  for all time t and 
has a population size at time t of &(t) .  The second population is not initially 
at p* and its population size is given by N ( t ) .  Using equation (lo), we can 
establish (see APPENDIX) the following relationship between population size and 
entropy: 

H ( P , , ~ * )  = t - > m  iim r l o g e ( f i / ~ ) i  +a* ~ ; r f ( ~ )  -f(fi) idt  

When population growth is density-regulated, all populations will eventually 
converge to some finite equilibrium density, N * .  Hence, the limit term in (11 )  
is zero and the fitness entropy can be written as 

This equation can be used to evaluate the effects of a nonequilibrium genetic 
structure on population growth. 

We can see from equation (2) that fitness entropy is independent of the mag- 
nitude of natural selection. This means that we can calculate H in ( 1  1 )  knowing 
only the initial frequency po and the equilibrium frequency p*. Furthermore, 
the right hand side of (11)  indicates that we can indirectly observe gene fre- 
quency change by comparing functions of N of an evolving population with 
those of a reference population at equilibrium. To clarify these ideas we will 
examine fitness entropy for density-independent fitness, logistic fitness, the fixa- 
tion of a dominant allele and then turn our attention to some experimental 
observations. 

Density-independent fitness: In this situation (GINZBURG 1977a), we have 
Wi, = a i j , f ( N )  = l ,g(N) = O  and equation (11)  becomes 

For the population that is initially at genetic equilibrium fi(t) = &(O) 
exp(W*t). The population that is not initially in genetic equilibrium will 
eventually converge to the same maximum growth rate, W*,  but because the 
selection process takes time, its growth curve, N ( t )  , will lag behind fi ( t )  . 
Defining this asymptotic time lag as the “selective delay,” T (p, ,p*),  we can 
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write the population density for large values of time as N ( t )  = N ( 0 )  exp 
W * ( ~ - T ) .  Since h ( 0 )  = N ( O ) ,  substitution of f i ( t )  and N ( t )  into (13) gives 
the fitness entropy and selective delay equation (5a). 

Logistic fitness: With genetic variance in parameter K of the logistic equation 
of population growth, the fitness expression (6) is 

with 'ai! = l/Kij, f ( N )  = -rN and g ( N )  = r. Substituting (14) into (12) we 
obtain 

where K* = l /a* is the harmonic mean of the KLJ's at genetic equilibrium. The 
total difference in adult numbers between the equilibrium and nonequilibrium 
genetic state, the integral in (15), is directly proportional to H(p, ,p*) .  This is 
a testable hypothesis because one can estimate the integral in (15) with the 
appropriate data. 

We have sketched some trajectories of f i ( t )  and N(t) for the logistic example 
(Figure 1) with two alleles and p,  = 0.01 and p* = 0.5. Using equation ( 2 ) ,  
H = 1.6145. Notice that whether we begin the experiment below the equilibrium 
density, N * ,  or at N* or above N* (Figures la, b, c respectively) in each case 
the entropy is the same. That is to say, H does not depend upon the initial popu- 
lation density as long as the nonequilibrium and equilibrium populations have 
the same initial numbers, N ( 0 )  = f i ( 0 ) .  Furthermore, in the example used in 
Figure Id, the selective differences were increased by a factor of ten, neverthe- 
less, H is unchanged at 1.6145, thus demonstrating that entropy is independent 
of the magnitude of natural selection. In this numerical example, the coefficient 
r / K *  of equation (15) is 0.001 so that the total difference between f i ( t )  and N ( t )  
equals 1614.5 individual-years of life (or whatever the appropriate time scale) 
which were not realized due to po # p*.  

Fixation of a dominant allele: Until now, we have only considered cases where 
all k alleles are maintained by natural selection. In general, the fitness entropy 
approach cannot be extended to all cases where natural selection results in the 
elimination of some subset of the alleles segregating at an autosomal locus. How- 
ever, in the biologically important case where a single dominant allele is selected 
to fixation ( p :  = 1, at* = all, and all af = alj = 1~11), the entropy expression (5b) 
now reads 

(see APPENDIX for details). For two alleles with constant genotypic fitness values 
of W,,  = W1, > Wz,  we have W* .= W ,  = W,, and from ( la)  W ( t )  = WL1-p-l 
( d p / d t )  . Substituting W* and W ( t )  into (1 6)  gives 
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FIGURE 1 .-Comparison of the population size trajectories of a population a t  genetic equi- 

librium, p’ =0.5, with populations initially at  p” ’= 0.01 but which do eventually converge to 
p* for the logistic model with genetic differences in parameter K (equation 14). The shaded 
area is the total difference in population size due to a nonequilibrium initial allele frequency. 
In (a) ,  ( h j  and (c j  K, ,  = K,;= 750 and K,, = 1500 but the initial population sizes are 250, 
1000 and 1500, respectively. In (d) the initial population size is 1000’, but the magnitude of 
selection has been increased ten-fold ( K l l  = K,, = 525, K , ,  = 10500). I n  all examples r = 1 
and K* = 1000. The shaded areas in (a )  - (d)  areequai.  

This is HAT DANE’S (1957) cost of a gene substitution which is independent of the 
intensity of selection. For two alleles with logistic genotypic fitnesses (14) arid 
K , ,  = K , ?  > Z i L 2  we can use (15) to write 

( K * / r )  (--logePo) = J: I k(t)  -- N ( t ) ] d t  . (18) 

Equation (18) is a precise statement of MACARTHUR’S (1962) analogue of the 
cost principle for  density-regulated population growth which in the words of 
>lACARTHCJK (pg. 1897. 1962) “enables us to estimate the number of animal- 
hours of life which are lost due to poor genotype.” 
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EXPERIMENTAL OBSERVATIONS 

We now want to deal with a fitness expression that appears to be appropriate 
for species of the genus Tribolium (DESHARNAIS and COSTANTINO 1980, 1982; 
COSTANTINO and DESHARNAIS 1981). If we let C be the rate at which a single 
adult inhibits recruitment, then the probability that a potential recruit will sur- 
vive to adulthood can be written as exp ( -CN)  , where N is the number of adults. 
Combining this expression with the density-independent adult recruitment rate, 
X ,  and mortality rate, D, we have the following equation for  the change in adult 
number, 

d N / d t  = N W ( N )  = N[Xexp(-CN)-D] . (19) 

With genetic differences in the parameter X (MOFFA and COSTANTINO 1977, 
DESHARNAIS and COSTANTINO 1980) , the fitness expression (6) is 

where X , ,  is the rate at which potential recruits with allele; i and i are produced 
per adult. Substituting = X t , .  f ( N )  = exp(-CN) and g ( N )  = --D illto (12) 
we obtain the entropy measure 

H(p,.p*) = X *  .f; [ex?(-CN(t)) - exp(-Cl\j(t)) Idt . (21’) 

Denoting the integral in (21) as Q ( p 0 , p * )  we have 

We expect, therefore, a linear relationship between the fitness entropy H ,  and 
the “selective difference area”, Q. We shall now describe our test of this hy- 
pothesis. 

In the study of MOFFA and COSTANTINO (1977), laboratory populations of the 
flour beetle Tribolium castarzeun were initiated with tell male and ten female 
adults and with frequencies of the coru-oil sensitive (cos) allele ranging from 
0-1 in increments of 0.1. Each culture was censused every two weeks for  68 
weeks and the cos allele frequencies were estimated at regular intervals. Since 
the populations segregating at the cos locus converged to a polymorphic equi- 
librium allele frequency ( p *  = 0.25), these data can be used to test the predic- 
tions based upon fitness entropy. 

COSTANTINO, GINZBURG and MOFFA (1977) used the adult census data at 
weeks 2, 4 and 6 to experimentally evaluate the density-independent fitness 
entropy given in equation (5a). We can now extend that analysis. Specifically. 
the mean number of adults from weeks 2 to 30 recorded by MOFFA and COSTAN- 
TINO (1977, Table 4) were used. The population initiated with the allele fre- 
quency of 0.3 was specified as the equilibrium population, N ( t ) ,  and for each 
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initial nonequilibrium population, N ( t ) ,  we computed the integral in equation 
(21) as below. The rate of adult inhibition of the immatures was set at C = 0.014 
(DESHARNAIS 1979). To illustrate these computations, the experimental observa- 
tions are sketched in Figure 2. The desired entity, Q(po,p*) is simply the shaded 

area lying above exp (--Cfi(t) ) minus the shaded area lying below this curve. 
A least-squares linear regression of the computed Q-values on N indicated a 

significant linear relationship and the hypothesis that the intercept was zero 
was accepted. Both of these tests were performed at the 0.05 level of probability. 
With this result, we recomputed the least-squares estimate of the slope, with the 
intercept zero, to be 1.7015 * 0.2760 (Figure 3 ) .  The coefficient of determination, 
R2, was 0.8445. Since H = X*Q, the inverse of the slope provided an estimate of 
X* = 0.5877 i- 0.0953. The standard error of X* was computed using the method 
described by KENDALL and STUART (1969 pg. 231). 

The experimentally-computed density-independent fitness measure, W* T (po, 
p * )  , and its density-regulated counterpart, X*Q(po,p*)  , together with the theo- 
retical H(po,p*)  are sketched as a function of the initial allele frequency in 
Figure 4. 

DISCUSSION 

In  this paper we have extended the original entropy measure to include an 
aspect of demity-dependent natural selection (see equation 12). This measure, 
written here for Tribolium, is H(p, ,p*)  = X*Q(po,p*). The “selective difference 
area” Q is the difference between the population size trajectories of the equili- 
brium and nonequilibrium populations as they converge to the equilibrium 
density. The function Q(po,p*)  is analogous to the concept of selective delay, 
.(p0,p*), which is the asymptotic time-delay of the growth curve of the non- 
equilibrium population in comparison with the equilibrium growth curve fi ( t )  = 
N ( 0 )  exp(W*t). It is the experimentally measurable entities Q(po,p*) and 
T (po,p*) that allows one to indirectly infer gene frequency change by comparing 
functions of population size of an evolving population with those of a population 
at genetic equilibrium. 

In these Tribolium data (Figure 4)) the estimates of W*~(p~, .p*)  were uni- 
formly positive. That is to say, during the exponential phase of population growth 
k(t) was greater than N ( t )  for all the initial allele frequencies. On the other 
hand, the estimates of X*Q(po,p*) for p o  = 0.2 and po = 0.4 were negative. For 
these two frequencies, both in the neighborhood of p* = 0.3, N ( t )  was greater 
than k(t) (Figure 2).  The closer p ,  is to p* the closer the trajectories of the 
equilibrium and non-equilibrium populations are expected to be and the more 
difficult it is to experimentally identify these differences. This procedure is more 
effective if the initial population genetic structure po is far from the equilibrium 

Our estimates of X*Q(po,p*) were based on the recorded adult numbers from 
week 2 to week 30, however, data were available to week 68. In the deterministic 
theory, eventually, po - > p* and N ( t )  - > N * .  While this is a reasonable ap- 
proximation, we are confronted with stochastic effects. The trajectories of fi ( L )  

P*. 
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FIGURE 2.-Calculation of the selective difference area, Q(p, ,p*) ,  represented by the in- 

tegral in equation (21) using the Tribolium adult census data, N ( t ) ,  for weeks 2 to 30 with 
C = 0.014. In (a) - (h) the heavy line represents the population which was initially at genetic 
equilibrium (p;=p*=0.3) and each narrow line represents the populations with different non- 
equilibrium initial allele frequencies (p ,#p*) .  In each case, Q(p, ,p*)  equals the shaded area 
lying above the heavy line minus the shaded area lying below it. 
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FIGURE 3.-Graph of the experimentally obtained Q ( p , , p * )  and the theoretical H ( p , , p * )  
with the least squares line Q = 1.7015 H inserted. R2 is the coefficient of determination. 

and N (  t )  do converge (Figure 2) but then fluctuate in the region of their steady- 
state. Indeed, COSTANTINO ar?d DESHARNAIS (1981 ) incoporated stochasticity 
into the deterministic model ( 19) and characterized the steady-state probability 
distribution of adult numbers as a gamma distribution. Consequently, we limited 
our analysis to week 30. Perhaps the inclusion of stochastic effects into an entropy 
measure will allow an even more complete analysis of these data. 

In  these data. we knew from previous work that parameter X was under selec- 
tion pressure (MOFFA and COSTANTINO 1977; DESHARNAIS and COSTANTINO 
1980). If D were the parameter of interest, 

W ( N , a i j )  = X exp(-CN)--D,, 

and substituting a , ,  = Dij, f ( N )  = 1 and g (  N )  = X exp( -CN) into (12) we 
find 

This expression with X = X+, is the same as when we considered genetic differ- 
ences in parameter X (equation 21). Clearly, the observation of a linear rela- 
tionship between the fitness entropy H and the selective difference area, Q, 



DENSITY-REGULATED FITNESS ENTROPY 327 

1.5 

Qt * 
sd 

1 .o 

t- * 0.5 k 

0.0 

A 
A 

I I I I I I I I I I 

0.0 0.2 0.4 0.6 0.8 1 I 

INITIAL ALLELE FREQUENCY 
FIGURE 4.-An exFerimenta1 check of H(p,,p*=O.S),  solid line with W * ~ ( p , , p ' ) ,  circles and 

X * Q  (p,,p') ,  triangles. 

does not allow us to distinguish between natural selection on X or  D; in either 
case, the theoretical expectation is the same. 

With each of the three fitness entropy measures suggested, the data of MOFFA 
and COSTANTINO (1977) on Tribolium has been used as an experimental check 
of the theory. Clearly. more data on different organisms are needed. In that 
regard, the proposed density-regulated measure (12) does allow a somewhat 
larger class of data sets to he considered. 

We thank LEV R. GINZBURG for a critical reading of the manuscript and for showing us that 
with the fitness expression (6) the trajectory of allele frequencies is independent of population 
size. 
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APPENDIX 

Derivation of equation (10): Computing the time-derivative of the fitness entropy ( 3 )  taking 
into account equations (1) with the density-regulated definitions of Wi and W given in equations 
(7), we have 

(AI 1 
We now want to show that the double summation term in (Al) is (a*, i.e., the value of the 
parameter #a at genetic equilibrium. 

k k  
dH(p(t),p*)/dt=W(N,or) - - (NI  - - f ( N )  .Z ,z ~ ' I ~ j a i j  . 

2 . = 1 3 = 1  2. 

Due to the symmetry o r i j  '= aii, we can write this double sum as 

The k-equations of the change in  allele frequency are 
dp, /dt  = p 3  (n,--cr)f (NI i = 1,. . . , k . 

At equilibrium dp,/dt = 0, ai = a* and (Y = a*. We require that f(N*) # 0 and p;  # 0; 
therefore a* =a* for  i = 1, . . . , k. Consequently, the summation in (U) is simply a* and we 
arrive at the derivative of the f i tness entropy stated in equation (IO) in the text. 
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Derivation of equation (I$): To obtain the relationship between population size and entropy 
expressed in equation (11). we note that the difference in  the average fitness of the non- 
equilibrium, W ( N , a ) ,  and the equilibrium, W ( ~ , Q * )  populations is 

W ( N , a )  - W(f i ,a*)  = d l o g N ( t ) / d t - d d o g ~ ( t ) / d t  . 

W ( N @ * )  = W ( h @ * )  +a* Cf(N)--f(fi)I + Cg(N)-&&I 

dH/dt=dlog ( N / k / d t  +a* [ f (k - f (N) l  + [g(fi)-,(Wl . 

H(P( t ) ,P*)  - H ( P , , P * )  =log C N ( t ) / h l  - 1% C~(O)/fi(O)l + 
Q* J; [f(i+)--f(N)l d t+  J; [g(N)-g(N)l at . 

(A31 

(A41 

Since 

we can substitute (A3) and (A4) into equation (10) to obtain 

(A5 
Integrating (A5) from zero to time t gives 

As t - > w , p ( t )  - > p *  so that H ( p ( t ) , p * )  = H(p*,p*)  = 0. Since N(O)  = f i ( 0 )  the term 
log [N(O) / f i (O)]  = 0 and we obtain (11). 

The time derivative of entropy when alleles are lost: Here we consider the more general 
case where natural selection results in the elimination of one or more alleles. Without loss of 
generality we can let p i ( t )  (i=l, . . . , k) represent the frequency of alleles maintained in the 
population by selection ( p f  > 0) and pi(t) (i=k+l, . . . , n) represent the frequency of alleles 
eliminated during the selection process ( p f = O ) .  The time derivative of fitness entropy ( 2 )  is 

which is analogous to (AI) .  In the first section of this appendix we show that 

k k 
p;aii  = , E  ptorj i  =,a: =#a* for i=1, . . . , k . 

i=1 % 2=1 % 3 

Hence, the double summation term in (A6) can be written as 

k n 

Substituting (A7) into (A6) and using the definitions given in equation (7) we have 
n 

dH(P(t) ,P*)/dt  = W(N,a)  - W(N,a*)  + f (N) . z (a*--cy*)p. (A81 

which is analogous to equation (IO). If no alleles are eliminated during the selection process 
(n=k) then the last term of (A8) equals zero and we obtain the main result derived in  the 
second section of this appendix. However, if natural selection results in the elimination of some 
of the alleles initially present when the selection process begins (n > k), then the last term 
of (A8) will equal zero for all t > 0 only when a* ,= a* for i = k + 1, . . . , n. T h i s  latter con- 
dition describes some additional genetic situations to which one can apply the fitness entropy 
approach. One biologically important case (fixation of a dominant allele) is discussed in  the 
main text. 
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